Что такое числа Фибоначчи: формула

Содержание
  1. Числа Фибоначчи
  2. О числах фибоначчи и трейдинге
  3. Суть теории Фибоначчи
  4. Числа Фибоначчи на финансовых рынках
  5. Выводы
  6. 5 способов вычисления чисел Фибоначчи: реализация и сравнение
  7. Замкнутая формула
  8. Рекурсия
  9. Запоминание
  10. Динамическое программирование
  11. Матричная алгебра
  12. Сравнение быстродействия
  13. Теоретические замечания
  14. Золотое сечение — что это такое? Числа Фибоначчи — это? Что общего между спиралью ДНК, ракушкой, галактикой и Египетскими пирамидами?
  15. Числа Фибоначчи — это что?
  16. 1², 2², 3², 5², 8²…
  17. Предлагаю посмотреть короткий фильм (7 минут), в котором раскрываются некоторые загадки Золотого сечения.  При размышлениях о законе чисел Фибоначчи, как о первостепенном законе, который управляет живой и неживой природой, появляется вопрос: Эта идеальная формула для макромира и микромира возникла сама или ее кто-то создал и удачно применил?
  18. Не могу не поделиться с Вами коротким документальным фильмом — ученые обнаружили загадочную связь между кодом ДНК и числом Бога

Числа Фибоначчи

Что такое числа Фибоначчи: формула

по материалам книги Б. Биггса «вышел хеджер из тумана»

О числах фибоначчи и трейдинге

В качестве вступления к теме ненадолго обратимся к техническому анализу. Если говорить кратко, то технический анализ ставит задачей предсказать будущее движение цены актива, основываясь на прошлых исторических данных. Наиболее известная формулировка его сторонников — цена уже включает в себя всю необходимую информацию.

Реализация технического анализа началась с развитием биржевых спекуляций и наверное полностью не закончена до сих пор, поскольку потенциально сулит неограниченные заработки. Наиболее известными методиками (терминами) в технализе являются уровни поддержки и сопротивления, японские свечи, фигуры, предвещающие разворот цены и др.

Парадоксальность ситуации на мой взгляд заключается в следующем — большинство описанных методов получили столь большое распространение, что, несмотря на отсутствие доказательной базы по их эффективности, действительно получили возможность влиять на поведение рынка.

Поэтому даже скептикам, которые пользуются фундаментальными данными, стоит учитывать эти понятия просто потому, что их учитывает очень большое число других игроков («технарей»).

Технический анализ может хорошо работать на истории, но стабильно зарабатывать с его помощью на практике не удается практически никому — гораздо проще разбогатеть, издав большим тиражом книгу «как стать миллионером, используя технический анализ»…

В этом смысле особняком стоит теория Фибоначчи, также применяемая для предсказания цены на разные сроки. Ее последователей обычно называют «волновиками». Особняком она стоит потому, что появилась не одновременно с рынком, а гораздо раньше — аж на целых 800 лет.

Другая ее особенность в том, что теория нашла свое отражение чуть ли не как мировая концепция для описания всего и вся, и рынок является лишь частным случаем для ее приложения. Эффектность теории и срок ее существования обеспечивают ей как новых сторонников, так и новые попытки составить наименее спорное и общепризнанное описание поведения рынков на ее основе.

Но увы — дальше отдельных удачных рыночных предсказаний, которые можно приравнять к везению, теория все-таки не продвинулась.

Суть теории Фибоначчи

Фибоначчи прожил долгую, особенно для своего времени, жизнь, которую посвятил решению ряда математических задач, сформулировав их в своем объемном труде «Книга о счетах» (начало 13 века). Его всегда интересовала мистика чисел — вероятно, он был не менее гениален, чем Архимед или Евклид.

Задачи, связанные с квадратными уравнениями, ставились и частично решались и до Фибоначчи, например известным Омаром Хайямом — ученым и поэтом; однако Фибоначчи сформулировал задачу о размножении кроликов, выводы из которой и принесли ему то, что позволило его имени не затеряться в веках.

Вкратце задача заключается в следующем. В место, огороженное со всех сторон стеной, поместили пару кроликов, причем любая пара кроликов производит на свет другую пару каждый месяц, начиная со второго месяца своего существования.

Размножение кроликов во времени при этом будет описываться последовательностью: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 и т.д.

С математической точки зрения последовательность оказалась просто уникальной, поскольку обладала целым рядом выдающихся свойств:

Из этих выводов наиболее интересен второй, поскольку в нем используется число 1.618, известное как «золотое сечение».

Это число было известно еще древним грекам, которые использовали его при постройке Парфенона (кстати, по некоторым данным служившим грекам Центробанком). Не менее интересно и то, что число 1.

618 можно обнаружить в природе как в микро-, так и макромасштабе — от витков спирали на панцире улитки до больших спиралей космических галактик.

Пирамиды в Гизе, созданные древними египтянами, при конструировании также содержали сразу несколько параметров ряда Фибоначчи. Прямоугольник, одна сторона которого больше другой в 1.

618 раза, выглядит наиболее приятно для глаза — это соотношение использовал Леонардо да Винчи для своих картин, а в более житейском плане им иногда пользовались при создании окон или дверных проемов.

Даже волну, как на рисунке в начале статьи, можно представить в виде спирали Фибоначчи.

В живой природе последовательность Фибоначчи проявляется не менее часто — ее можно найти в когтях, зубах, подсолнухе, паутине и даже размножении бактерий.

При желании последовательность обнаруживается практически во всем, включая человеческое лицо и тело.

И тем не менее многие утверждения, находящие числа Фибоначчи в природных и исторических явлениях, явно неверны — это распространенный миф, который часто оказывается неточной подгонкой под желаемый результат.

Числа Фибоначчи на финансовых рынках

Одним из первых, кто наиболее плотно занимался приложением чисел Фибоначчи к финансовому рынку, был Р. Эллиот. Его труды не пропали даром в том смысле, что рыночные описания с применением теории Фибоначчи часто называются «волнами Эллиота». В основу развития рынков здесь была положена модель развития человечества из суперциклов с тремя шагами вперед и двумя назад.

То, что человечество развивается нелинейно, очевидно почти каждому — знания Древнего Египта и атомистическое учение Демокрита было полностью утрачено в Средневековье, т.е. спустя примерно 2000 лет.

Однако даже если принять теорию шагов и их количество за истину, остается неясным размер каждого шага, что делает волны Эллиота сравнимыми с предсказательной силой орла и решки.

Отправная точка и правильный расчет числа волн были и видимо будут главной слабостью теории.

Тем не менее локальные успехи у теории были. Боб Претчер, которого можно считать учеником Эллиота, правильно предсказал бычий рынок начала 80-х, а 1987 год — как поворотный. Это действительно случилось, после чего Боб очевидно чувствовал себя гением — по крайней мере, в глазах других он точно стал инвестиционным гуру.

Подписка на Elliott Wave Theorist Пречтера в тот год выросла до 20 000, однако уменьшилась в начале 1990-х годов, поскольку предсказываемые далее «гибель и мрак» американского рынка решили немного повременить.

Однако для японского рынка это сработало, и ряд сторонников теории, «опоздавших» там на одну волну, потеряли либо свои капиталы, либо капиталы клиентов своих компаний.

Равным образом и с теми же успехами теорию нередко пытаются применить к торговле на валютном рынке.

Теория охватывает самые разные периоды торговли — от недельной, что роднит ее со стандартными стратегиями теханализа, до расчета на десятилетия, т.е. влезает на территорию фундаментальных предсказаний. Это возможно благодаря варьированию числа волн.

Слабости теории, о которых говорилось выше, позволяют ее адептам говорить не о несостоятельности волн, а о собственных просчетах в их числе и неверном определении исходного положения. Это похоже на лабиринт — даже если у вас есть верная карта, то выйти по ней можно лишь при условии, что понимаешь, где именно находишься. Иначе пользы от карты нет.

В случае же с волнами Эллиота есть все признаки сомневаться не только в правильности своего месторасположения, но и в верности карты как таковой.

Выводы

Волновое развитие человечества имеет под собой реальную основу — в средние века волны инфляции и дефляции чередовались между собой, когда войны сменяли относительно спокойную мирную жизнь.

Наблюдение последовательности Фибоначчи в природе по крайней мере в отдельных случаях сомнения тоже не вызывает. Поэтому каждый на вопрос, кто есть Бог: математик или генератор случайных чисел — вправе давать собственный ответ.

Лично мое мнение такого, что хотя всю человеческую историю и рынки можно представить в волновой концепции, высоту и продолжительность каждой волны не дано предугадать никому.

При этом 200 лет наблюдений за  американским рынком и более 100 лет за остальными позволяют четко сказать, что фондовый рынок растет, проходя через различные периоды роста и стагнации. Этого факта вполне достаточно для долгосрочного заработка на фондовом рынке, не прибегая к спорным теориям и доверяя им больше капитала, чем следует в рамках разумных рисков.

Источник: https://investprofit.info/tchisla-fibonatchtchi/

5 способов вычисления чисел Фибоначчи: реализация и сравнение

Что такое числа Фибоначчи: формула

Программистам числа Фибоначчи должны уже поднадоесть. Примеры их вычисления используются везде. Всё от того, что эти числа предоставляют простейший пример рекурсии. А ещё они являются хорошим примером динамического программирования. Но надо ли вычислять их так в реальном проекте? Не надо.

Ни рекурсия, ни динамическое программирование не являются идеальными вариантами. И не замкнутая формула, использующая числа с плавающей запятой. Сейчас я расскажу, как правильно. Но сначала пройдёмся по всем известным вариантам решения. Код предназначен для Python 3, хотя должен идти и на Python 2.

Для начала – напомню определение:

Fn= Fn-1+ Fn-2

и F1= F2=1.

Замкнутая формула

Пропустим детали, но желающие могут ознакомиться с выводом формулы. Идея в том, чтобы предположить, что есть некий x, для которого Fn = xn, а затем найти x. что означает

сокращаем xn-2

Решаем квадратное уравнение: Откуда и растёт «золотое сечение» ϕ=(1+√5)/2. Подставив исходные значения и проделав ещё вычисления, мы получаем:

что и используем для вычисления Fn.

from __future__ import divisionimport math def fib(n): SQRT5 = math.sqrt(5) PHI = (SQRT5 + 1) / 2 return int(PHI ** n / SQRT5 + 0.5) Хорошее: Быстро и просто для малых n Плохое: Требуются операции с плавающей запятой. Для больших n потребуется большая точность. Злое:

Использование комплексных чисел для вычисления Fn красиво с математической точки зрения, но уродливо — с компьютерной.

Рекурсия

Самое очевидное решение, которое вы уже много раз видели – скорее всего, в качестве примера того, что такое рекурсия. Повторю его ещё раз, для полноты.

В Python её можно записать в одну строку: fib = lambda n: fib(n – 1) + fib(n – 2) if n > 2 else 1 Хорошее: Очень простая реализация, повторяющая математическое определение Плохое: Экспоненциальное время выполнения.

Для больших n очень медленно Злое: Переполнение стека

Запоминание

У решения с рекурсией есть большая проблема: пересекающиеся вычисления. Когда вызывается fib(n), то подсчитываются fib(n-1) и fib(n-2). Но когда считается fib(n-1), она снова независимо подсчитает fib(n-2) – то есть, fib(n-2) подсчитается дважды.

Если продолжить рассуждения, будет видно, что fib(n-3) будет подсчитана трижды, и т.д. Слишком много пересечений. Поэтому надо просто запоминать результаты, чтобы не подсчитывать их снова. Время и память у этого решения расходуются линейным образом. В решении я использую словарь, но можно было бы использовать и простой массив.

M = {0: 0, 1: 1} def fib(n): if n in M: return M[n] M[n] = fib(n – 1) + fib(n – 2) return M[n] (В Python это можно также сделать при помощи декоратора, functools.lru_cache.) Хорошее: Просто превратить рекурсию в решение с запоминанием. Превращает экспоненциальное время выполнение в линейное, для чего тратит больше памяти.

Плохое: Тратит много памяти Злое: Возможно переполнение стека, как и у рекурсии

Динамическое программирование

После решения с запоминанием становится понятно, что нам нужны не все предыдущие результаты, а только два последних. Кроме этого, вместо того, чтобы начинать с fib(n) и идти назад, можно начать с fib(0) и идти вперёд. У следующего кода линейное время выполнение, а использование памяти – фиксированное.

На практике скорость решения будет ещё выше, поскольку тут отсутствуют рекурсивные вызовы функций и связанная с этим работа. И код выглядит проще. Это решение часто приводится в качестве примера динамического программирования.

def fib(n): a = 0 b = 1 for __ in range(n): a, b = b, a + b return a Хорошее: Быстро работает для малых n, простой код Плохое: Всё ещё линейное время выполнения Злое: Да особо ничего.

Матричная алгебра

И, наконец, наименее освещаемое, но наиболее правильное решение, грамотно использующее как время, так и память. Его также можно расширить на любую гомогенную линейную последовательность. Идея в использовании матриц.

Достаточно просто видеть, что А обобщение этого говорит о том, что Два значения для x, полученных нами ранее, из которых одно представляло собою золотое сечение, являются собственными значениями матрицы. Поэтому, ещё одним способом вывода замкнутой формулы является использование матричного уравнения и линейной алгебры.

Так чем же полезна такая формулировка? Тем, что возведение в степень можно произвести за логарифмическое время. Это делается через возведения в квадрат. Суть в том, что

где первое выражение используется для чётных A, второе для нечётных. Осталось только организовать перемножения матриц, и всё готово. Получается следующий код. Я организовал рекурсивную реализацию pow, поскольку её проще понять. Итеративную версию смотрите тут. def pow(x, n, I, mult): “”” Возвращает x в степени n. Предполагает, что I – это единичная матрица, которая перемножается с mult, а n – положительное целое “”” if n == 0: return I elif n == 1: return x else: y = pow(x, n // 2, I, mult) y = mult(y, y) if n % 2: y = mult(x, y) return y def identity_matrix(n): “””Возвращает единичную матрицу n на n””” r = list(range(n)) return [[1 if i == j else 0 for i in r] for j in r] def matrix_multiply(A, B): BT = list(zip(*B)) return [[sum(a * b for a, b in zip(row_a, col_b)) for col_b in BT] for row_a in A] def fib(n): F = pow([[1, 1], [1, 0]], n, identity_matrix(2), matrix_multiply) return F[0][1] Хорошее: Фиксированный объём памяти, логарифмическое время Плохое: Код посложнее Злое: Приходится работать с матрицами, хотя они не так уж и плохи

Сравнение быстродействия

Сравнивать стоит только вариант динамического программирования и матрицы. Если сравнивать их по количеству знаков в числе n, то получится, что матричное решение линейно, а решение с динамическим программированием – экспоненциально.

Практический пример – вычисление fib(10 ** 6), числа, у которого будет больше двухсот тысяч знаков. n = 10 ** 6 Вычисляем fib_matrix: у fib(n) всего 208988 цифр, расчёт занял 0.24993 секунд.

Вычисляем fib_dynamic: у fib(n) всего 208988 цифр, расчёт занял 11.83377 секунд.

Теоретические замечания

Не напрямую касаясь приведённого выше кода, данное замечание всё-таки имеет определённый интерес. Рассмотрим следующий граф:

Подсчитаем количество путей длины n от A до B. Например, для n = 1 у нас есть один путь, 1. Для n = 2 у нас опять есть один путь, 01. Для n = 3 у нас есть два пути, 001 и 101.

Довольно просто можно показать, что количество путей длины n от А до В равно в точности Fn. Записав матрицу смежности для графа, мы получим такую же матрицу, которая была описана выше.

Это известный результат из теории графов, что при заданной матрице смежности А, вхождения в Аn — это количество путей длины n в графе (одна из задач, упоминавшихся в фильме «Умница Уилл Хантинг»).

Почему на рёбрах стоят такие обозначения? Оказывается, что при рассмотрении бесконечной последовательности символов на бесконечной в обе стороны последовательности путей на графе, вы получите нечто под названием “подсдвиги конечного типа”, представляющее собой тип системы символической динамики.

Конкретно этот подсдвиг конечного типа известен, как «сдвиг золотого сечения», и задаётся набором «запрещённых слов» {11}. Иными словами, мы получим бесконечные в обе стороны двоичные последовательности и никакие пары из них не будут смежными. Топологическая энтропия этой динамической системы равна золотому сечению ϕ.

Интересно, как это число периодически появляется в разных областях математики.

  • 6 февраля 2010 в 14:03
  • 21 декабря 2009 в 09:08
  • 8 ноября 2009 в 13:44

Источник: https://habr.com/post/261159/

Золотое сечение — что это такое? Числа Фибоначчи — это? Что общего между спиралью ДНК, ракушкой, галактикой и Египетскими пирамидами?

Что такое числа Фибоначчи: формула

Золотое сечение — что это такое? Числа Фибоначчи — это? В статье — ответы на эти вопросы кратно и понятно, простыми словами.

Эти вопросы вот уже несколько тысячелетий будоражат умы всё новых и новых поколений! Оказывается математика может быть не скучной, а захватывающей, интересной, завораживающей!

Другие полезные статьи: Квантовая физика и сознание человекаВ чем смысл жизни человека? Объясняет философ Виктор ФранклКак правильно жить? Мудрые советы древнегреческих философов  Самопознание или как познать тайны мироздания?

Числа Фибоначчи — это что?

Поразителен тот факт, что при делении каждого последующего числа числовой последовательности на предыдущее получается число, стремящееся к 1,618.

Обнаружил эту загадочную последовательность счастливчик математик средневековья Леонардо Пизанский (более известный под именем Фибоначчи). До него Леонардо да Винчи обнаружил в строении тела человека, растений и животных удивительным образом повторяющуюся пропорцию Фи = 1,618. Это число (1,61) ученые еще называют «Числом Бога».

До Леонардо да Винчи эта последовательность чисел была известна в Древней Индии и Древнем Египте. Египетские пирамиды построены с применением пропорции Фи = 1,618. 

Но и это еще не все, оказывается законы природы Земли и Космоса каким-то необъяснимым образом подчиняются строгим математическим законам последовательности чисел Фидоначчи.

Например, и ракушка на Земле, и галактика в Космосе построены с применением чисел Фибоначчи. Абсолютное большинство цветов имеет 5, 8, 13 лепестков. В подсолнухе, на стеблях растений, в закрученных вихрях облаков, в водоворотах и даже в графиках изменения курсов валют на Форексе, всюду работают числа Фибоначчи.

Итак, что такое Золотое сечение или Золотая или Божественная пропорция? Фибоначчи также обнаружил, что последовательность, которая состоит из квадратов чисел Фибоначчи является еще большей загадкой. Попробуем графически изобразить в виде площади последовательность:

1², 2², 3², 5², 8²…

Если вписать спираль в графическое изображение последовательности квадратов чисел Фибоначчи, то мы получим Золотое сечение, по правилам которого построено все во вселенной, включая растения, животных, спираль ДНК, человеческое тело, … Список этот можно продолжать до бесконечности.

Предлагаю посмотреть короткий фильм (7 минут), в котором раскрываются некоторые загадки Золотого сечения.  При размышлениях о законе чисел Фибоначчи, как о первостепенном законе, который управляет живой и неживой природой, появляется вопрос: Эта идеальная формула для макромира и микромира возникла сама или ее кто-то создал и удачно применил?

Что ВЫ думаете по этому поводу? Давайте вместе подумаем над этой загадкой и быть может мы приблизимся к тайне мироздания.

Очень надеюсь, что статья была полезной для Вас и Вы узнали, что это такое Золотое сечение *и Числа Фибоначчи? До новых встреч на страницах блога, подписывайтесь на блог. Форма подписки — под статьей.

Не могу не поделиться с Вами коротким документальным фильмом — ученые обнаружили загадочную связь между кодом ДНК и числом Бога

Всем желаю много новых идей и вдохновения для их реализации!

Алёна Краева

SMARTБЛОГ

Источник: http://alenakraeva.com/new-digital-world/zolotoe-sechenie-chto-eto-takoe-chisla-fibonachchi-eto/

ФОП-Юрист
Добавить комментарий